

Product Description

1

	

Contents
	
Who is StrongBox Data Solutions? ... 2	

What is StrongLINK?… ... 3	

Why did we build StrongLINK?… .. 3	

What does StrongLINK do?… ... 4	

How does StrongLINK work?… ... 5	

1) Out-Of-Band Model .. 6	

2) In-Band Model .. 8	

3) Hybrid Model .. 11	

StrongLINK Architecture ... 12	

Data and Metadata ... 15	

 Querying .. 16	

 Versioning .. 16	

 Data Integrity ... 18	

 Constellations and Galaxies .. 19	

Data Provenance .. 24	

2

Who is StrongBox Data Solutions?

StrongBox® Data Solutions (SDS) is a worldwide leader in big data storage, providing
powerful solutions to many of the world’s largest corporations, governments and
organizations. SDS is a pioneer in simplifying data management and reducing storage costs
with revolutionary technology.

What we do

Our goal is to make data storage simple, flexible and affordable, and we pride ourselves on
offering customer support that is unmatched in the industry.

How we do it

1. We engineer solutions with the end user in mind so our products are easy to use,

making even the most complex IT operations simple and automated.
2. We believe all organizations deserve powerful, secure storage solutions―not just

those with big budgets.
3. We believe that you should be able to choose the right products to meet your business

requirements. We designed our solutions to deliver value, to be reliable, to enhance
the resources you already own, and to be scalable in order to support seamless
technology upgrades for an IT investment that is truly future-ready.

4. We build on industry standards so there is no vendor lock-in. Our customers choose
SDS because we offer the best solutions, not because they’re locked into proprietary
software or architectures.

3

What is StrongLINK?

StrongLINK is a system that helps manage and exploit your ever-growing data set effectively
and efficiently.

Why did we build StrongLINK?

Approximately 90% of the world’s data was created within the last two years1. Of the
massive amount of data produced annually, a stunning 80%2 will be archived for compliance
or “just in case we need it” reasons, but will never be read again. The remaining data may,
at best, be accessed and re-used only once per year.

Many organizations:

 Are overwhelmed by the amount of data
they have

 Have legacy data silos which are often
driven by application-specific data server
components

 Need accountability for their data
 Need an effective bit-rot audit/recovery

methodology
 Are struggling with accurate data

provenance, retention and periodic
purges for compliance purposes

 Are trying to avoid NAS/SAN sprawl
 Need to control CapEx and OpEx while

maximizing their existing infrastructure

 Need to distribute data to multiple
locations for quality of service (QoS)
and/or disaster recovery (DR)

 Are trying to use the cloud effectively,
both for processing and data storage, but
are worried about their data being held
hostage and/or data security breaches

 Are attempting to standardize their
approach to workflow implementation to
enable a more efficient use of resources

 Are embracing the concept of Data Life
Cycle Management

1 Source: Active Archive Alliance
2 Source: IDC Digital Universe Study, sponsored by EMC

4

What does StrongLINK do?

StrongLINK can:

 Aggregate your existing data silos into a
single global namespace

 Export the global namespace (or a subset
thereof) using a number of standard
protocols, including NFS, CIFS/SMB,
HTTP(S), sFTP and S3

 Manage and export the same global
namespace across all your sites

 Manage data access with Access Control
Lists that have granularity down to the
individually managed digital asset level

 Maintain a complete and accurate audit
trail of who did what to any data item in
the system with no possibility of
alteration or deletion

 Transparently and automatically
maintain multiple check-summed copies
of your data, based on configurable
policies

 Automatically extract file type-specific
metadata as your data is ingested into
the system

 Define custom metadata attributes and
manually or automatically apply them
during or after the data ingest process

 Retain multiple versions of every
managed digital asset and associated
metadata in the system

 Support tiering policies in order to
automatically keep data on the
appropriate storage tiers, based on cost
and access requirements

 Transparently integrate cloud storage,
including configurable automatic
encryption and periodic auditing of data
asset copies made to cloud stores

 Replicate metadata and managed data
assets across all your sites, based on
configurable policies

 Facilitate business demand-driven elastic
expansions of your data management
capacity through a transient cloud
infrastructure or the temporary
deployment of VMs on your internal
infrastructure

 Keep running, even in the presence of a
partial system failure

5

How does StrongLINK work?

StrongLINK is a modern, no master, distributed server application that is designed to fully
leverage today’s multi-core CPUs, virtual environments and cloud infrastructure. It was
created using time-tested and well-supported Open Source technologies such as nodejs,
MongoDB, MySQL and ZeroMQ. We deliberately avoided proprietary protocols and
technologies wherever possible to ensure your data is never held hostage.

Figure 1

Figure 1 shows a logical view of a StrongLINK deployment. The primary takeaway from this
diagram is that StrongLINK is designed to leverage―not replace―your existing infrastructure
investment. This is a logical consequence of the fact that many organizations have large
data sets, and “fork lift upgrades” just aren’t practical anymore.

StrongLINK is deployed in one of three usage models, described in the next sections.

6

1) Out-Of-Band Model

In this model, StrongLINK is deployed alongside your existing storage (see Figure 2). Your
client systems continue to mount and access your storage directly, with your storage seeing
StrongLINK as yet another client system. This model is most appropriate when StrongLINK is
used as a smart archival system.

Figure 2

Deployment is as simple as using our web GUI to:

 Configure StrongLINK to access your network
 Set up appropriate authentication to access the storage

o User with full read access privileges on the storage; or
o Integration into existing LDAP/AD domain

 Set up 1st level global namespace points where your existing file structures will be
ingested

 Tell StrongLINK about the shares exported from those of your existing storage systems
that need to be actively archived

 Pull the trigger

7

StrongLINK will walk all the mounted stores and ingest all the files. The ingest process
consists of extracting metadata from known file types, storing the metadata in its database,
generating checksums of the file, and copying the file to the archive storage.

The primary upside of this model is that it’s very non-intrusive. End users have absolutely
nothing to do; they just keep using the remote mounted storage as usual. The primary
downside is that a user can delete a file while StrongLINK is ingesting it, something that can
easily be avoided by training users to verify the archive status of a file before deleting it. If
a remote file or object storage system supports setting an immutability or R/O bit on a file
or object, StrongLINK will attempt to do so during the ingest. Once complete, the original
access permissions are restored.

StrongLINK can be configured to delete the original copy on your existing storage once any
archival copies have been verified. StrongBox Data Systems strongly recommends that this
feature not be enabled unless multiple archive copies are created and verified.

StrongLINK will continue to monitor the configured storage for new files or updates to
previously archived files. As these changes occur, the new files or updated versions will be
ingested as previously described. When a file is updated, unless versioning has been
specifically disabled, this results in a new version of the metadata record in the database
and a new copy of the file in the archive. Versioned data assets can be pruned to keep
archive space from growing unbounded.

As a final note, StrongLINK does not assume an active management role for your existing
storage in this model. Meaning, it does not assume responsibility for automatically
performing periodic purging on your existing storage to ensure there is always some open
space available, nor does it do backups of your existing storage in the traditional sense. This
model is solely intended for minimally intrusive active archive systems.

8

2) In-Band Model

In the In-Band Model, StrongLINK is deployed between your client machines and your existing
(and/or new) storage, as shown in Figure 3. Clients no longer mount your existing storage
directly, but instead mount exports of portions or the entire global namespace maintained
by StrongLINK.

Figure 3

With this model, a transition period is required to ingest data from your existing storage and
migrate it to storage that is actively managed by StrongLINK. The ingest is quite similar to
that discussed in the Out-Of-Band model, but with one significant difference. By definition,
the Out-Of-Band Model deployment does not include any managed SSD or rotating storage
behind the StrongLINK system (appliance or VM), whereas the In-Band Model does.

9

So, in this deployment model, copies of your data will be made on one or more stores
managed by StrongLINK. These stores could be SSD, spin-down or traditional rotating
storage, or LTFS tape. The stores can be configured in a tiered structure that allows active
placement of data, based on cost and access requirements. Additionally, individual stores
can be aggregated into pools, generally to increase I/O performance and the effective size
of the pool. Inclusion of tape-based stores allows this model to perform both traditional
backup (short-term retention) and archival (long-term retention) functions as well.
StrongLINK’s ability to transparently manage multiple copies of your data allows it to
perform periodic data integrity audits, either on a spot check or comprehensive basis,
depending on your individual requirements. If the audit reveals damaged copies, these can
be restored from good copies. Of course, since not all data is critical enough to warrant this
level of protection and there is an associated storage space cost, this functionality is also
fully configurable on a per-store and per-file type basis.

The deployment process is only slightly more complex than the one used for the Out-Of-Band
Model. Once the previously described first four steps are completed, the web GUI is used to:

 Create desired stores
 Create desired store pools
 Select copy creation policies and criteria (this is how tiering is implemented)

The last step is determining how the data is to be ingested, i.e. by either using the “pull
model” like the Out-Of-Band Model does, or by “pushing” the data into StrongLINK using
traditional tools like robocopy or rsync. Another way to “push” data into StrongLINK is to
employ drag ‘n drop GUI tools like Windows Explorer, WinSCP, FileZilla, Finder, a Linux tool
like Midnight Commander, or the file manager GUI, bundled into your Linux desktop.

10

StrongLINK also provides a native client for managing your entire storage environment:

Figure 4

11

3) Hybrid Model

As previously mentioned, unless a completely new site is being deployed, a transition period
is required when standing up an In-Band StrongLINK system, which is where the Hybrid Model
comes into play. Some storage (new storage as part of a modernization project or a portion
of the existing storage) is provisioned behind the StrongLINK system. This storage, which we
call “managed storage”, is set up as one or more stores and/or pools. These stores and/or
pools become a target for the ingestion of data from the existing unmanaged storage. If
there is a tape (or cloud) archival tier in the configured StrongLINK hierarchy, copies will be
made to that tier as the data is ingested, based on the policies that have been configured.

As data on the managed storage is verified, the original copies on the unmanaged (existing)
storage can be removed. This allows old existing storage to be retired or moved behind the
StrongLINK system to become additional managed storage. As the managed stores are
verified and come online, they are exported to your clients as part of the global namespace.
Usually, all of the unmanaged storage is eventually converted to managed or retired so the
system reverts to the In-Band Model. However, it’s possible to maintain some Out-Of-Band
unmanaged storage purely for archival purposes if that configuration better suits your
workflow requirements.

This same methodology allows transparent upgrades to your physical storage as new
technologies come online. You simply stand up the new storage, set it up as one or more
new stores behind StrongLINK, start making copies from your older technology managed
storage, and verify that the new copies are valid. Once the new copies are validated, the
metadata database can be bulk updated to remove references to copies on the old storage.
Once that has been done, the old storage is then shut down. The entire process occurs
automatically, behind the scenes, while StrongLINK is serving your data out to your client
systems. This is a perfect example of where temporary augmentation of the StrongLINK
system using elastic cloud capability (or temporary deployment of VMs on your internal
infrastructure) makes a lot of sense. This allows the migration to proceed at a rapid pace
without degrading service to your client systems or busting your budget with CapEx for
capacity you don’t typically require.

12

StrongLINK Architecture

Prior to diving into StrongLINK’s architecture, we should define a few terms.

 Collection: a special type of resource that contains references to other resources,

much like a file system directory has references to the files it contains. A collection
may contain other collections as well as normal resources.

 Component: a program that embodies a constrained subset of the overall functional
capability for the StrongLINK system.

 Constellation: a tightly coupled group of nodes that runs the StrongLINK software.

 Datastore: also called a store. A datastore is a physical system that contains one or
more User Data Items (UDIs). Examples include a local file system store, a CEPH object
store, an S3 bucket or a Glacier object store.

 Galaxy: a loosely coupled group of constellations. Generally, there is one constellation
per site. The galaxy couples multiple sites together into a single global namespace.
Galaxies are usually deployed to implement Disaster Recovery strategies or to improve
Quality of Service when accessing the same data at multiple locations.

 Member: a resource that belongs to one or more collections. A member is considered
a child of any containing collections; members of the same collection are siblings.
Finally, a collection is the parent of its members.

 Namespace: a symbol used to group a set of like items. Namespaces are hierarchical
just like a traditional file system. StrongLINK namespaces use the “/” separator just
like a Unix directory path.

 Node: a single physical machine or VM instance. Generally, it will have multiple CPUs
and/or cores. In most StrongLINK deployments, nodes will be part of a constellation and
possibly a galaxy so each node may be configured differently, both in terms of software
and hardware, to achieve the overall system objectives. Nodes are most commonly
configured as database engine nodes, I/O nodes or workflow execution nodes.

 Pool: a group of datastores connected by a policy that controls how UDIs are
distributed among the member stores.

13

 Resource: a metadata record that may or may not have an associated UDI. The
resource is versioned (unless specifically disabled) and can either be populated when an
UDI is ingested into the system or created independently from the UDI ingest.
Additional metadata fragments can be added at any time, either programmatically or
manually. Any portion of the record can be modified or removed by users with the
appropriate access.

 Tag: a generic key-value pair that can be attached to a resource, store, pool,
namespace or UDI.

 UDI: a “user data item”. This is the StrongLINK designation for an original user data
asset. Typically, this will be a file or an object in an object store.

StrongLINK is a multi-component, no-master server application. The components
communicate over a mesh network topology implemented with ZeroMQ, a well-supported,
robust, efficient and highly successful network communications package. All inter-
component communication payloads are encrypted; because the messages are quite small,
the encryption does not adversely impact system performance. We’ve deliberately avoided
SSL to eliminate the certificate acceptance problems that commonly occur with self-signed
certificates. Breaking the application into several components provides several benefits:

 An application-level self-healing capability that is far superior to O/S-based HA
solutions

 Efficient use of multi-core processors
 Isolation of related functionality to a single component of manageable complexity
 Inherent availability of all functions within the system for configuration on all nodes in

the system
 Extreme flexibility when configuring software running on the various nodes in the

system, which supports tuning based on the physical locality and connectivity of
existing and new storage, as well as matching node hardware to the specific component
mix run on the node

 Reliable automatic live updates with minimal impact to system operations
 24x7, zero backup windows operation

StrongLINK leverages two open source databases to store unstructured and highly structured
data types which are used to run the system. Both databases support sharding for scalability
and replication for reliability.

14

The unified global namespace is the key to the system. Think of it as a virtual file system.
Much like a Unix file system, datastores can be mounted at various points under the root of
the global namespace so that all of the resources on that store are now part of the global
namespace. The global namespace is exported as a file system to the host operating system.
From there, it can easily be exported to client systems via several standard protocols.

The StrongLINK store manager also supports aggregating datastores into pools using various
configurable policies to distribute new UDIs among the stores that form the pools. Stores can
be dynamically added to or removed from a pool at any time. They can also be temporarily
taken offline for maintenance.

StrongLINK uses trigger events, an internal script engine, job queues and a periodic job
manager to enable workflow automation3. The most common use cases for this are
automatic UDI copy generation and automatic datastore purging to ensure zero failure. The
first case is pretty straightforward. The replication policy is configured to generate N copies
to N destination stores, based on your selection criteria. It could be as simple as all UDIs
created in datastore “foo” are copied to stores “bar” and “Charlie”. Or, you can be more
selective and only copy MP3 files created by user “Joe” on store “mix” to stores
“production” and “archive”. The store purge case is also easy to understand. Simply
configure the store with a high water mark and a low water mark. These would typically be
specified as a percentage of datastore total space, but where total capacity isn’t fixed (e.g.
a store backed by a tape library), the high and low water marks would be specified as an
absolute capacity (e.g. 10 TB). The store manager watches the datastore utilization and
when the high water mark is exceeded, a purge operation is put onto the system
management queue. When this job executes, it will query the system to find UDIs that can
be deleted to reduce the datastore space utilization. The discovered UDIs will be deleted on
a best effort basis until the datastore reaches the low water mark. The default query policy
is a simple least recently used query, but you can configure additional constraints such as
‘the file must have a copy on store “archive”’. Keep in mind that reaching the low water
mark may not be possible when adding additional constraints beyond the simple LRU policy.

3 General scripting to enable customer-specific workflows is not publicly exposed until V1.6, which releases at the
beginning of Q2, 2017. It is available prior to that as a PSS item.

15

Data and Metadata

As noted in the previous section, metadata is referred to as a “resource” and user data
(usually in files or objects) as a “UDI”. As a cardinal rule, StrongLINK never modifies your
data. However, we do access it, usually during the ingest process, for these purposes:

 Chunking: sometimes your original data is broken into chunks for various reasons:

o Maximizing performance on the underlying managed storage
o Overcoming file size limitations on the underlying managed storage
o Improving recall performance when accessing small segments of large UDIs;

e.g. recalling a 10-second clip out of a 3-hour video file
 Checksum generation: unless specifically disabled, StrongLINK generates one of

multiple checksum types when your data is ingested. If the UDI is chunked on ingest, we
generate checksums for the entire item and each chunk. This allows StrongLINK to
efficiently repair damaged copies from valid ones by only replacing damaged chunks.

 Encryption: encryption to internal storage is optional. All data copied to the cloud is
encrypted as it is uploaded.

 Proxy generation: unless specifically disabled at ingest, for image UDIs that exceed a
minimum set of dimensions, a small proxy image will be generated for rapid display
when resources are browsed.

 Data type detection: StrongLINK can generally deduce the UDI data type from a file
extension when the source data is on file-based storage. For object-based source
storage and for unrecognized file extensions, the system looks at the initial portion of
the data to determine its type and uses standard media types (MIME types), as defined
by IANA. This is very similar to what the Unix file command does.

 Metadata extraction: once the UDI data type is determined, StrongLINK will apply a
format-specific analyzer during the ingest process to extract relevant metadata. For
example, image formats are often tagged with EXIF metadata. StrongLINK will extract
this metadata automatically and populate the resource record with it.

16

Querying

The resource is a metadata record in the StrongLINK database. Specifically, the record
contains one or more previously defined metadata fragments. These fragments are defined
using JSON Schema, a well-documented and widely supported IETF RFC. Using JSON Schema
allows StrongLINK to validate incoming metadata prior to updating the database record.
StrongLINK comes with a number of predefined fragments, and you can define your own as
well. StrongLINK stores the metadata in JSON format, a huge benefit as JSON is so widely
known and accepted in the Web Application space. StrongLINK uses JSON with a few
application-specific keywords added to minimize the query system learning curve.

So, what’s the big deal about querying anyway? Put simply, many organizations only have a
fuzzy idea of what data they have to work with, and their retained data sets have become
way too large to grok without some kind of data management system. By collecting all the
metadata, we provide the ability to understand what you have so you can leverage it in the
future, long after you’ve forgotten what file contains last year’s research results from
“Project X”. You could also submit queries to get a list of all images with location x, y in the
field of view on Feb 3rd, 2001 between 3 pm and 4 pm local time, for example. Then there’s
another critically important piece to the puzzle: when you have billions of data items under
management, it’s pretty important that the query system provide search results in a timely
fashion, even for complex searches. StrongLINK has been carefully crafted to begin returning
result sets in seconds, even when the result set contains millions of resources4.

Versioning

Software developers are familiar with Source Code Management Systems that retain multiple
versions of a program’s source code. Storage system administrators can do this through
snapshots which allow them to restore a previous version of a file per a user request.

4 Despite our best efforts, there are certain instances where queries can take a significant amount of time to produce a
result set. The most common example of this is applying a sort to the result set as part of the query. We can and do
perform the result set sorting as it is being generated, but, by definition, we cannot complete the sort until we have the
full result set. We’ve done our absolute best to minimize these instances.

17

StrongLINK maintains multiple versions of both resources and UDIs. Other than available disk
space, there is no limit to the number of versions that can be retained; pruning is available
to retain specific versions or perhaps the last N versions of a particular resource. The
resource is versioned semi-independently from the UDI. Any modification to metadata will
always result in a new version of the resource but not a new version of the associated UDI.
So, if you do an initial ingest of a file, then the result would be version R1 of the resource
and version U1 of the UDI; R1 would have a pointer to U1. Now, if you do 4 different updates
to metadata but make no updates to the UDI, then the result would be versions R2, R3, R4
and R5 of the resource, all of which point to version U1 of the UDI. Now, if you ingest an
updated copy of the UDI, then the result would be version R6 of the resource, which points
to version U2 of the UDI. Versions R1 through R5 of the resource would continue to point to
version U1 of the UDI. This per resource versioning system completely obviates the need for
the traditional snapshotting supported by NAS system vendors so long as UDI versions are
properly archived prior to pruning. The reason is that the resource record (which is quite
small by comparison) is never deleted, except in the case of a hard destroy command.

When a resource is pruned, the pruned versions of the resource have a flag set so they don’t
show up in normal queries. Moreover, any UDIs that are only associated with pruned
resources are deleted (except from archive stores) as this can recover significant storage
space. Because protection of your data is of paramount concern to us, a “force” flag must
be set to prune UDIs that don’t have copies on an archive store; if a flag is not set, a list of
resource IDs that were not pruned will be returned.

18

Data Integrity

Data integrity includes several aspects: 1) the integrity of the StrongLINK database; 2) the
integrity of the data (the UDIs) you store in StrongLINK5; and 3) the integrity of the
datastores themselves.

Our databases are automatically backed up at least once per day. In small systems with no
replica sets, the databases have to be locked for writing during the backup period. Larger
systems or smaller ones with high availability requirements will have replica sets so we can
take a replica set offline for the backup period, and the system will continue to operate
normally. This enables 24x7 operation with no backup windows required for the databases.

If the StrongLINK system is configured with an archive tier, the database backup files will be
automatically ingested and copied to a specific share in the archive. This will segregate the
database backups onto a special group of tapes for easy recovery. If the system doesn’t have
an archive tier, the user must backup the database backups in some fashion. One way to do
this is to set the system up with a Glacier store in which to stash the database backups.

One of StrongLINK’s primary functions is to maintain the integrity of the UDIs over time. This
is achieved by maintaining multiple copies and periodically comparing them against the
checksum(s) calculated when the data was ingested. If a bad copy is found, it can be
restored from a good copy. If your data set includes particularly large files, then it’s a good
idea to have them chunked when ingested. In fact, certain stores (primarily object stores)
require this for performance reasons. A side benefit of chunking is that a UDI can be
repaired more quickly since only individual chunks that don’t match their checksum have to
be replaced. From a performance perspective, copies on tape aren’t audited as often. There
are a number of configuration parameters available to control how copies are made and how
often they are audited for validity.

5 StrongLINK assumes no responsibility for the integrity of data stored on external (Out-Of-Band) storage given that end
user clients have direct access to that storage and can modify or delete those files at will.

19

The last piece of the data integrity puzzle is the managed datastores themselves. After a
catastrophic event, it’s obviously not very useful to have a perfect set of database backups
if you haven’t backed up the datastore file systems as well. While cloud stores like S3 and
Glacier are handled automatically by the provider, you must still perform regular backups of
any in-house datastores you may have, such as Isilon or NetApp storage.

Constellations and Galaxies

As noted in the definitions above, a constellation is a group of nodes and a galaxy is a group
of constellations. You may be tempted to think of a constellation as a cluster, and there are
some similarities, but we coined the term because there are major differences as well.
Generally speaking, the typical HPC cluster is fairly homogeneous, so any node can run any
of the standard applications the cluster supports. StrongLINK constellation nodes can be
tuned, both at the hardware and software level, to optically perform specific functions. For
example, you might have one node configuration that is biased towards big I/O to the
datastores, another towards running database shards or replica sets, another towards
workflow execution, and another towards servicing client API requests very responsively.

20

Figure 4

StrongLINK’s multi-component, no-master constellation is the crux of its self-healing
capability. A well-deployed constellation will have several instances of each component
running on a decent-sized subset of the constellation. Generally, each component should be
spread across a different subset of nodes, as this promotes system reliability and doesn’t
overload every node in the constellation by trying to run too much on every mode. It’s also a
more cost-effective overall solution since the node hardware doesn’t have to be the latest
and fastest in most cases. For organizations with a large number of assets to manage, some
nodes should only be dedicated to running database shards or replica sets, especially if there
is workflow automation or a non-trivial amount of metadata search in the workload.

21

In most cases, an organization with multiple sites will deploy one constellation per site and
then federate them into a galaxy. More strictly speaking, the boundary between
constellations is a WAN link6. Figure 4 (next page) shows a galaxy with four constellations.

Galaxies are deployed to implement DR or QoS policies. By design, all metadata is replicated
(with configurable periodicity) to all constellations in a galaxy. This provides the same
global namespace to all sites in the galaxy and great assurance that all the metadata will
survive the complete loss of a site. This has implications in terms of support infrastructure
such as LDAP or AD. For example, in order to consistently maintain the owner information
for a resource, the user data from the directory service must be the same at all sites.

Conversely, StrongLINK doesn’t automatically replicate UDIs to all sites in the galaxy
because metadata is quite small (usually around 1kB per version of a resource) while UDI
sizes vary considerably, and some organizational WAN links would quickly be overrun if we
replicated everything. There’s also the issue of how much storage is available at each site.
That is why the organization must configure the UDIs to be replicated. This can be done by
store, pool, namespace, data type, or a combination thereof. Another aspect to consider
when replicating UDIs is whether the target site has an archive tier. If so, then a common
practice is to replicate the UDIs to a working cache datastore at the remote site(s) so they
can then be archived at the remote site. Once that is done and the checksum has been
verified, the UDI copies in the remote site working cache can be deleted.

One final note: a datastore cannot span constellations. By that, we mean that if
constellation A has a datastore named foo, then only nodes in constellation A can service
requests to store data in or recall data from foo. It is however, totally legal to make UDI
copies to datastores that are part of another constellation within the galaxy. So, if
constellation A is part of a galaxy that has another constellation B with datastore bar, it’s
common to make a UDI copy from foo to bar. This is, in fact, the very definition of
replication for StrongLINK. Remember, the single resource points to all copies of the UDI. In
this case, the same resource record will exist in the databases at both sites A and B. And
both of those records will point to the two UDI copies on foo and bar.

6 The one exception to this is StrongLINK’s Remote Office Gateway, which allows small organizations with a central office
and one or more small satellite offices to deploy an extended constellation in a Hub and Spoke topology.

22

With this in mind, let’s examine a few failure scenarios to see the impact on client systems.
To keep it simple, we’ll use the configuration described in the previous paragraph. In normal
operation, the clients at site A will mount their shares from constellation A while the clients
at site B will mount their shares from constellation B. All clients at both sites can potentially
see the exact same global namespace7.

Scenario 1: a node fails in constellation A. In this case, assuming the constellations were
deployed correctly to support self-healing, there will be almost no impact to the clients at
site A and zero impact to the clients at site B. The worst that can happen is the node with
the DB writer is the one that drops out. In this case, it will take a few seconds for the
database nodes to promote a new writer from the existing readers8.

Scenario 2: the physical storage for a datastore at site A (e.g. foo) goes offline for service.
If all the UDIs on foo have copies on another store at site A, then there would be zero
impact to clients at either site. If some UDIs have copies on another store at site A, but
some only have copies on another store at site B, then there might be a slight delay opening
the UDIs that have to be accessed across the WAN. If there are no copies on faster tiers such
as SSD or an Isilon, but there is a copy on the archive tier (either at site A or site B), then
the archive copy would be recalled to cache and served to the client from the cache. The
takeaway from this scenario is that StrongLINK always tries to open the UDI copy on the
fastest tier, i.e. the one closest to the client. It should be noted that chunking can
significantly improve StrongLINK’s ability to mask WAN latency.

7 What the client actually sees is a function of their access permissions and how the namespace export was defined.
8 There is one writer per database shard so users need not be concerned about this being a performance bottleneck.

23

Scenario 3: the entire A constellation takes a powder. Assuming that the WAN is still up,
the clients can remount their shares from the B constellation. This requires minimal manual
intervention. The additional load this puts on the site B constellation and the consequent
impact on users at site B should be considered. CIFS and NFS operation across WAN links may
be problematic as well. That said, key clients can remount from the B constellation and
work at a reduced performance level. A better alternative, especially when WAN links aren’t
very fast or the local outage will be extended, would be to copy critical assets to a local
system at site A using an alternative supported protocol such as sFTP, do whatever updates
are required, and then re-ingest it to the B constellation to create a new version of the
resource. When the A constellation comes back online, it will immediately begin updating its
databases to reflect any changes that occurred at site B while it was down. Once the
metadata syncing is complete, the process of replicating new UDIs meeting the configured
replication criteria from site B to site A will begin. The system administrator can configure
the A constellation with a bandwidth limit on the UDI replication process to prevent
swamping the WAN link. It should be noted that UDI replication is a PULL process whereas
metadata replication is a PUSH process. When a constellation gets a metadata record from
another constellation, it will determine if the associated UDI meets the replication criteria
and attempt to start a copy if it does. The source constellation will respond with a flow
control response, where required, to stay within its bandwidth limit. Otherwise, it will allow
the pulling constellation to proceed with the copy. The pulling constellation will meter its
read requests to stay within its own configured bandwidth limitation.

24

Data Provenance

Providing 100% rock solid data provenance is one of the core drivers of StrongLINK’s
architecture. So, what does this really mean?

The first component of data provenance is access control. StrongLINK maintains tight access
control for every resource in the system. Access is based on each individual user accounts.
These accounts can be created locally within StrongLINK, or can be part of your enterprise
directory system; both LDAP and AD are supported. When an account is created, it has no
access rights granted. The process of granting an account access to various resources in the
system involves creating roles, ACLs and ACSes. Time for some more definitions:

 ACL: an Access Control List is a set of ACSes.

 ACS: an Access Control Specifier defines the access rights a role has for the selected
entity in the system.

 Domain: a namespace for a related group of users.

 Role: a named entity given access rights to the system, which are granted to one or
more users. Permissions to access the system cannot be granted to a user. They must
be granted to a role and that role must be granted to the appropriate user(s). A role is
analogous to a Unix GID. A newly created role has absolutely zero access to the system;
it must be granted one or more ACLs or ACSes to have defined access to the system.

 User: a named entity given controlled access to the system. User names are generally
associated with a person, but may also be used to represent a particular type of
software client or a function or group of functions within a software client. Permissions
to access the system cannot be granted to a user. They must be granted to a role and
that role must be granted to the appropriate user(s)9. This is analogous to a Unix UID. A
newly created user has absolutely zero access to the system.

9 When integrating with LDAP or AD systems that have granted permissions directly to a user, StrongLINK
automatically creates a role, based on the user name, which is assigned to the user. The access granted
directly to the user in the directory server is granted to the user-specific role within StrongLINK.

25

It should be noted that user names and role names are always qualified by the domain in
which they were created. As such, they must be unique within a domain, but not within the
system as a whole.

The second component of data provenance is a comprehensive, secure and immutable audit
trail. StrongLINK audits every operation in the system. The audit records are encrypted
before being written to the rotating audit logs which are marked immutable once written. In
systems configured with an archive tier, the audit logs are automatically archived. If there is
no archive tier, then the system administrator is responsible for configuring a target storage
space in which to copy the logs and for regularly backing up that space.

The final component of data provenance is the ability to prevent the modification of a
resource or its associated UDI. StrongLINK supports marking a resource as read only (R/O).
When this occurs, StrongLINK will also set the associated UDI to R/O. Moreover, for any UDI
copies that reside on underlying storage that supports immutability, the UDI will be set to
the immutable state. When a resource is put into the R/O state, only the system
administrator can change it back to R/W, and that action is recorded in the audit log as are
any subsequent modifications or deletions. In other words, once a file is marked R/O, no one
except for the system administrator can set the file back to R/W, not even the creator or a
user with write permission on the resource.

